
Arrays in Imperative Lambda CalculusSam Kamin�, Uday S. ReddyComputer Science Dept.University of Illinois at Urbana-ChampaignUrbana, IL 61820fkamin,reddyg@cs.uiuc.eduJune 15, 1992AbstractIn recent work, Swarup, Reddy, and Ireland de�ned a formal system called ImperativeLambda Calculus to provide clean integration of functional and imperative programming styles.In this paper, we study the issues of array manipulation in this framework. It is shown that theunique features of the calculus allow one to express array algorithms using high-level abstractionsthat are not available in purely functional languages.1 IntroductionOne view of functional programming is that it is restricted to \value-oriented" computation. Valuesare, by de�nition, static (or eternal) and no dynamic quantities are permissible. This viewpointmakes it di�cult to deal with large aggregates such as arrays. It also makes it di�cult to model avariety of dynamic objects which are required in programming.We take a more \positive" view towards functional programming. First of all, we value func-tional programming for the abstractions it o�ers in terms of higher-order functions and lazy datastructures. Secondly, we value it for its mathematical properties: the naturality of its semantics,conuent reduction system, support for equational reasoning etc. This liberal view point allows usto extend functional programming with dynamic objects (called references) and state-dependentvalues (called observers) while preserving all the properties of functional programsmentioned above.A formal system called imperative lambda calculus (ILC) is presented in [13] along these lines. Thissystem has the following important properties:� It is a conservative extension of the typed �-calculus, i.e., all the constructs of the lattercontinue to have their usual meaning in ILC.� ILC terms can be evaluated using a conuent reduction system which extends the reductionsystem of typed �-calculus.�Partial support received from NASA Grant NAG{1{613.1

2 ILC 2An important bene�t of this approach is that the abstraction mechanisms of functional program-ming, viz., higher-order functions and lazy evaluation, now become available with references andobservers as well. So, imperative programming in ILC is much richer than that in conventionalimperative languages like Pascal. It is also richer than value-oriented (purely functional) solutionsto in-place updates such as [5, 15, 16].Our notion of arrays is the following. An array is an indexed collection of references. Sincereferences are dynamic objects, an array becomes a dynamic structure. One can de�ne and usevarious operations to manipulate arrays such as extracting subarrays, transposing matrices etc..All such operations map dynamic structures to other dynamic structures. Secondly, one can de�neoperations to alter the structures themselves such as, e.g., multiplying every component value bya scalar. While the structures are being altered, the other structure-level manipulations continueto make sense. The most important bene�t of programming in ILC is that problem solutions canbe decomposed into the two classes: structure-level manipulations and dynamic manipulations.This paper is in �ve sections: (1) an overview of ILC as presented in [13]; (2) explanation ofthe sugared version of ILC used in Section 3; (3) examples of ILC, showing the power, as well aslimitations, of the language in its present state; (4) comparisons of ILC with related work; and (5)conclusions concerning the future of ILC, especially about our current research on it.2 ILCILC is an extension of typed �-calculus with constructs to declare, dereference, and assign to,references1. Thus, its syntax is:e ::= k j x j �x:�.e j e1(e2)j letref r:Ref � := e1 in e2j get x:� <= e1 in e2j e0 := e1; e2subject to the typing rules presented below. To explain the new constructs: letref introduces andinitializes a reference variable r; get dereferences a reference value e1 and assigns the value to x;and assignment modi�es the referent of the reference value e0 before evaluating e2.For example, (1) letref r:Ref int := 1 in(r:=2; get x:int <= r in x+1)has value 3.With no other restrictions, this language would, of course, be a non-conuent mess. For instance,(2) letref r:Ref int := 0 in(r:=1; get x <= r in x) + (get y <= r in y)could have value 1 or 2. This is just the reason that adding assignment to functional languages isdi�cult.1ILC also has pairing, but we omit it in this abstract.

2 ILC 3Obs-intro Obs-elim� ` t : �� ` t : Obs � � ` t : Obs �� ` t : � (if � has only � types)Creation�; r : Ref ! ` e : ! �; r : Ref ! ` t : Obs �� ` (letref r:Ref ! := e in t) : Obs �Dereference� ` l : Ref ! �; x : ! ` t : Obs �� ` (get x:! <= l in t) : Obs �Assignment� ` l : Ref ! � ` e : ! � ` t : Obs �� ` (l := e; t) : Obs �Figure 1: Type inference rulesThe type system ensures that such potentially non-deterministic expressions are illegal. (In[13], a conuent and strongly normalizing set of reduction rules is given.) We must �rst describethe set of types, which is divided into two parts2, applicative types (normal, applicative values) andobserver types (values that depend on the state):Applicative types: � ::= � j �1 ! �2Observer types: ! ::= � j Obs � j Ref ! j !1 ! !2� stands for some primtive types, like int; thus, � represents the usual applicative types. The typeRef ! is a reference to a value of type !; note that we can have references to references, so canbuild arbitrary pointer structures. Obs � is the type of values that observe the state and return avalue of (applicative) type � ; you can think of such values as functions in State ! � .Figure 1 contains those inference rules that relate to Obs and Ref types and the new expressions;the typing rules for the �-calculus fragment of ILC are exactly as in the typed �-calculus. InFigure 1, r and x are variables, e, l, and t expressions.Expression (1) can be typed as follows (for type-setting purposes, we omit occurrences of hy-pothesis r:Ref int ` r:Ref int):r:Ref int ` 1:int r:Ref int ` 2:int r:Ref int, x:int ` x+1:intr:Ref int, x:int ` x+1:Obs intr:Ref int ` get x<=r in x+1:Obs intr:Ref int ` r:=2; get x<=r in x+1:Obs int` letref r:Ref int := 1 in (r:=2; get x <= r in x+1):Obs int` letref r:Ref int := 1 in (r:=2; get x <= r in x+1):int2In [13], there were three parts, but we've combined two of them here; in this version, the system does not havethe strong normalization property, but it is still conuent.

2 ILC 4Notice how this expression observes the state internally, but from the outside is not considered anobserver.On the other hand, expression (2) is clearly not typable: the outer letref will introduce theassumption r:Ref int, so that each of the summands in its body will be typed as: r:Ref int `: : ::Obs int. With the \Ref int" assumption, Obs-elim is not applicable and since + takes int,rather than Obs int, arguments, the sum cannot be typed.There are no rules speci�cally for arrays. We can view arrays simply as functions from indicesto references: � Array = int! Ref �As an example, we can write a swap routine as:swap! a i j = �k. get x <= a iin get y <= a jin a i := y; a j := x; kswap! a i j is a function from observers to observers. Given an observer k, it swaps the ith andjth elements of the array a and invokes k. The e�ect of swapping is thus only observable inside k.In general, the e�ects of assignments are localized to speci�c observers. As discussed in [13], thisplays a large role in obtaining a semantically clean language.Before proceeding to technical matters, we feel a few words are in order concerning the vexedquestion of \referential transparency." It is often said that functional languages are referentiallytransparent, imperative languages aren't, and adding dynamic values such as references to a func-tional language renders it no longer referentially transparent, a view with which we are not alto-gether in accord.Let us stipulate for purposes of this discussion that the term \referentially transparent" hasthe meaning given by Quine [10]: A language is referentially transparent if for all terms t and u,and all contexts C[�], t � u implies C[t] � C[u]. This de�nition does not seem to provide a basisfor a challenge of any kind: if equivalence is given by its denotational semantics, the referentialtransparency of a language is an immediate consequence of the compositionality of its semanticde�nition.Where, then, is the argument? It is here: when functional languages are said to be referentiallytransparent, while imperative languages are not, there is an implicit assumption about the natureof the semantics of those two classes of languages. Functional languages have a \simple semantics"with no side e�ects, and thus a simple equality relation; for example,let x=e in (x, x) � (e, e).Imperative languages have complex semantics with state, rendering some \obvious" equivalences,like the one just given, untrue.In ILC, the logjam is broken by using types to distinguish between static and state-dependentvalues. An applicative type such as int contains static values and the corresponding observer typeObs int contains state-dependent values. No dynamic value can ever \masquerade" as a staticone; it is this masquerading that, we believe, is the real source of the argument over referentialtransparency. The above equivalence holds in ILC just as all other equivalences of lambda calculus.Moreover, a new set of equivalences holds for state-dependent values, as documented in [13]. Thus,ILC is referentially transparent, not only in the trivial sense mentioned above, but also in that itsequivalences are what one expects to see.

3 ILC IN PRACTICE 53 ILC in practicePure ILC is somewhat cumbersome to use in practice. In this section, we de�ne some straightfor-ward extensions motivated by practical considerations.As already pointed out, an observer of type Obs� can be thought of as a function in State! � .The notion of an \e�ect" is then as a modi�er, i.e., a function, of observers. This is essentially themeaning of a \command" in the continuation semantics of imperative languages [4]. So, we de�nea new primitive type cmd with the (polymorphic) semantics:cmd = 8�. Obs � ! Obs �Some primitive operations on commands are:skip : cmd:= : Ref ! * ! ! cmd; : cmd * Obs � ! Obs � /* assocites to right */� : cmd * cmd ! cmdskip � �k. kx := y � �k. x := y; kc;k � c kc1 � c2 � �k. c1 (c2 k)As the name implies, skip is the empty command, x := y is the assignment command, c;k appliesthe command c to observer k, and c1 � c2 is the sequential composition of commands. Note thatthe pure ILC construct e1 := e2; k can now be parsed as a command e1 := e2 applied to an observerk. But, its meaning obtained by this parse as the same as the original meaning. The \;" operatoris essentially function application, but it associates to the right. So, c1;c2;k may be thought of asexecuting c1, c2, and k, in that order, to produce a result.These facilities allow us to use a \combinatorial" style of programming at the level of commandsinstead of going down to the level of observers. For example, we can de�ne a function denoting\for loops" as follows:(* for : int ! int ! (int ! cmd) ! cmd *)for i j c = if i > j then skipelse (c i) � (for (i+1) j c)We also de�ne the command-level analogues of letref and get constructs with the followingsemantics:letref-cmd v:Ref � := e in c � �k. letref v:Ref � := e in c kget-cmd x:� <= e in c � �k. get x:� <= e in c kThe only di�erence between these and the original constructs is that we have a command c ratherthan an observer as the body. We also allow multiple letref-cmds and get-cmds to be cascaded.For example, the swap routine of the previous section can now be de�ned asswap! a i j = get-cmd x <= a iand y <= a jin (a i := y) � (a j := x)

4 EXAMPLES 64 ExamplesThis section describes an ILC function for LU-decomposition. Before presenting it, we need tode�ne two data types, Matrix and Vector3:type Matrix = int * int * (int -> int -> real ref)type Vector = int * (int -> real ref)The matrix (r; c; f) has r rows and c columns, each indexed from 1; fij is the reference atthe (i; j)th location. Note that Matrix and Vector are (indexed) collections of references, not ofnumbers.The simplest operations on Matrix are destructors:(* rows: Matrix -> intcols: Matrix -> intmatrix ref: Matrix -> int -> int -> real ref *)fun rows (r, ,) = rfun cols (, c,) = cfun matrix ref (, , f) i j = f i jand similarly for Vector:(* length: Vector -> intvector ref: Vector -> int -> real ref *)fun length (r,) = rfun vector ref (, f) i = f iMore interesting are the functions that select rows and submatrices from matrices. row m i is theVector that is the ith row of m:(* row: Matrix -> int -> Vector *)fun row (, c, f) i = (c, fn j => f i j)and subVector V lo is the su�x of vector V going from element lo to the end:(* subVector: Vector -> int -> Vector *)subVector (r, f) lo = (r-lo+1, fn i => f (i+lo-1))The most complicated of these operations is subMatrix. subMatrix m (i1,i2) (j1,j2) rep-resents the rectangular submatrix of m whose upper left corner is point (i1; i2) and whose lowerright corner is (j1; j2):(* subMatrix: Matrix -> (int * int) -> (int * int) -> Matrix *)fun subMatrix (r, c, f) (i1, i2) (j1, j2)= let newr = j1-i1+1 and newc = j2-i2+1in (newr, newc, fn (k1, k2) => f (k1+i1-1) (k2+i2-1))3In this section, we use ML-like notation to enhance readability.

4 EXAMPLES 74.1 LU-decompositionLU-decomposition is naturally described as a recursive process:LUD(m) = 8>>>><>>>>: m; if jmj = 1m01 ; if m1 = eliminate(m) and m01 = LUD(m1)eliminate is the following function on matrices, where the mi are the rows of the matrix:eliminate0BBBB@ m1m2...mn 1CCCCA = 0BBBB@ m1m2 	m1...mn 	m1 1CCCCAand 	 is the following operation on rows:(x1; x2; : : : ; xk)	 (y1; y2; : : : ; yk) = (m; y2 � x2m; : : : ; yk � xkm);where m = x1y1Our coding of the problem follows this quite directly, but note that when the sub-matrix m1 isdecomposed in place, the recursive structure of LUD becomes tail-recursive, so that we can use aloop: (* LUD: Matrix -> cmd *)fun LUD (m as (r, c, f)) =for 1 (r-1) (fn i => eliminate (subMatrix m i i c r))The main bene�ts of the functional style we employ lie in the handling of submatrices. Thecode for the eliminate function also illustrates this, here selecting subrows of the rows of m onwhich to perform the 	 operation:(* eliminate: Matrix -> cmd *)fun eliminate m =for 2 (rows m)(fn j =>let row1 = row m 1and rowj = row m jin get-cmd m11 <= vector ref row1 1and mj1 <= vector ref rowj 1in let mult = mj1/m11in (vector ref rowj 1 := mult) �(vector-update(fn (x, y) => x-y*mult)(subVector rowj 2)(subVector row1 2)))

4 EXAMPLES 8The call to vector-update performs most of the work of 	 above, but does so destructively.It is a useful function for performing an operation on two vectors with one receiving the result:(* vector-update: (real * real -> real) -> Vector -> Vector -> cmd *)fun vector-update f v1 v2 =for 1 (length v1)(fn i => get-cmd v1i <= vector ref v1 iand v2i <= vector ref v2 iin (vector ref v1 i) := f (v1i, v2i))The get-cmd dereferences (vector ref v1 i) and (vector ref v2 i), binds the correspondingvalues to v1i and v2i, then does the assignment. Notice that, since vector ref returns a reference,which is an assignable object, there is no need for a separate element-modi�cation operation.4.2 DiscussionThe most important di�erence between the above treatment of LU decomposition and a solutionbased on a purely functional paradigm is the following: we model arrays as indexed collections ofreferences whereas a functional solution models them as indexed collections of values. A referenceis a dynamic object; more precisely, it is the name of a dynamic object. While values referredto by such names change from state to state, the names themselves remain constant. ILC givesus the vocabulary to de�ne a whole new set of operations at the level of such names which areimpossible to express in functional languages. For example, row and subVector extract subregionsof a matrix and such regions can be operated upon by the generic operation vector-update. Allthese operations can be used in any state.In contrast, a functional (or value-oriented) solution would have to deal with each state sepa-rately. After extracting parts of a value matrix and operating on them, one would have to put thenew values of the parts back to produce a new state of the matrix. For example, here is a de�nitionof LUD in Haskell:LUD m = if (bounds m) = (1,1) then melse let fm' = eliminate m;m1 = copySubMatrix m' (2,2);m1' = LUD m1gin array (bounds m)[(1,j) := m' ! (1,j) | j <- [1..n]]++ [(i,1) := m' ! (i,1) | i <- [2..n]]++ [(i,j) := m1' ! (i,j) | i,j <- [2..n]]Thus, the argument can be made that the imperative version of this code is actually simplerthan the purely functional.However, the truer comparison is with a \single-threaded" functional language, like those in[5, 15, 16]. We take the single-threaded lambda calculus, �st [5], as a typical example.There are two major di�erences between the treatment of LUD in �st versus ILC. First, thereis no type \cmd" in �st | only the normal functional types exist (sometimes decorated to indicatesingle-threadedness, but not essentially changed). Second, there is no such thing as a subarray, orrow, per se. Thus, any procedure that operates on part of an array must be given, Fortran-style,

4 EXAMPLES 9the entire array plus the indices descrbing the part of the array that is of interest. Thus, for andLUD would need to be de�ned like this:(* for: int -> int -> (int -> � -> �) -> � -> � *)fun for i n f s = if i>n then s else for (i+1) n f (f i s)(* LUD: Matrix! -> Matrix! *)val LUD = for 1 n eliminateeliminate is given a large matrix and the indices for the subarray to be eliminated, rather thansimply an array. This is unfortunate, but not very compelling. The change in eliminate itself ismore serious. The obvious transposition of our code into �st is not legal:(* eliminate: int -> Matrix! -> Matrix! *)fun eliminate i m =for (i+1) (rows m)(fn j => fn m =>let mj1 = lookup m j iand m11 = lookup m i iand mult = mj1/m11in let* m' = update! m j i multin vector-update (fn (x,y)=> x-y*mult)(subVector-row m' j (i+1))(subVector-row m' i (i+1))(updatable-subVector-row m' j (i+1)))m(Note that we need to pass to vector-update two kinds of arguments, those that index into anarray and those that update an array.)The di�culty is that we can give no useful de�nition to the function updatable-subVector-row.What we would like to say to allow the de�nition of vector-update is:fun updatable-subVector-row m j k = fn i => fn x => update! m j (i+k) xBut this can't be type-checked in �st because \it [is not] permissible for a function to `capture' amutation to one of its free variables" [5].Our only choice is to replace the call to vector-update by:for (i+1) (cols m')(fn k => fn m =>let* v1i = m j kand v2i = m i kin update! m j k (v1i-v2i*mult))m'

5 RELATED WORK 10The use of vector-update in ILC gave a pleasing modularity to the code and allowed it tomimic the mathematical function 	 directly (while updating in place). In contrast, the �st solutionbreaks down modularity and distributes the index manipulation throughout the code. Thus, singlethreading seems to compromise the very values function programming espouses, viz., functionalabstraction and lazy evaluation, while ILC preserves them.5 Related workConcerning the general problem of destructive update in functional languages, reference [13] con-tained a number of comparisons of ILC with previous work. Here we recapitulate those comparisonsonly briey, while adding some observations speci�c to the problem of arrays.The phrase \adding arrays to a functional language" means di�erent things to di�erent people.The basic fault line is this: are we trying to obtain only the e�ciency of destructively-updatedarrays, or do we want their expressiveness (with their e�ciency presumably following)?E�ciency. Most work in this area has started from the assumption that the functional program-ming style is uniformly preferable to the imperative style, and the only problem is how to getthe e�ciency associated with destructive update. Thus, functional programs are annotated,or type-checked, or statically analyzed, to reveal \single-threadedness," but the programs donot basically di�er from what one would write in a language like Haskell [7], with non-destructively updated arrays. It follows that none of these approaches admits programs likeour LUD, whose tail-recursive structure is possible only because of destructive update.Implicit update. Much work has been directed at detecting single-threadedness in the ab-sence of any information from the programmer. These e�orts include [1, 6, 8, 12]. Aserious practical problem is the unreliability of such methods. Sophisticated static anal-yses are easily fooled, so that a small change in a program can have an unexpectedlydramatic e�ect on its performance.Linear logic-inspired systems. Though Wadler [15, 16] does not speci�cally address ar-rays, his linear logic type system is obviously applicable to them. (It has been furtherexplored by Wakeling and Runciman [17].) Here, the type checker guarantees single-threadedness. However, the programmer never speci�cally requests a destructive up-date, so it is up to the compiler to determine when it is appropriate. For example, inWadler's destructive append! example in [15], both arguments of append! are single-threaded; it is \obvious" which one should actually be modi�ed, but it is far from clearhow intelligent a compiler would be needed to sort this out in general.In Guzm�an and Hudak's single-threaded �-calculus (�st) [5], the programmer explicitlyrequests destructive update of an array by writing update! instead of update (and let*instead of let); the type checker checks that the use of these destructive operations issensible. However, these are still just annotations of a functional program: remove the\!" and *", and you have a functional program that will give exactly the same answers,albeit more slowly. So, again, our LUD and destructive-op could not be written in �st.Furthermore, the type rules of �st essentially forbid the capture of arrays in closures ifthe closure can destructively update the array; thus, our entire style of programming by\decomposing in place" is not supported.

6 CONCLUSIONS 11Expressiveness. Two paradigms which go beyond the pure functional style are data ow lan-guages [9, 2] and higher-order imperative languages, most notably, Reynolds's Forsythe [11].I-structures [2] are an array-like data structure used in dataow languages. They allow once-only assignment to each component. In [2], several problems are mentioned whose solutionin a purely functional style is di�cult. These can be solved in ILC just as they are solvedthere. The problems mentioned there for which I-structures are not appropriate|histograms,for example|can also be solved in ILC. Recently, the data ow paradigm has been extendedwith mutable data structures [3]. The resulting language has the expressive power of ILC, butit is nondeterministic and has the avor of a \concurrent" programming language as opposedto a functional language.Reynolds's Forsythe [11], apart from its novel conjunctive type system, is very close in spiritto our work. However, it seems that Forsythe is really meant to be an imperative language(with a functional \architecture") whereas ILC is meant to support both imperative andfunctional paradigms. Thus, many restrictions appearing in Forsythe are removed in ILC.For instance, references are �rst-class values and functions themselves are storable. Moresigni�cantly, ILC allows computations which create and use state internally to be viewed asfunctional computations from the outside. This is an important requirement for a smoothintegration of functional and imperative styles.6 ConclusionsThe systems of Wadler [15, 16] and Guzm�an and Hudak [5] do one thing that ILC doesn't: theydistinguish between reading from and writing to the state. In ILC, a state \observer" may doeither, and no distinction is made. Thus, two dereferencing operations must be sequentialized,which obviously should not be necessary. If ILC were developed to include the notion of \pureobservers," programming in it would be more convenient.The uses of monads, as advocated by Wadler [14]. are really orthogonal to the problem ofside e�ects, as can be seen from the wide variety of applications displayed in [14]. They providenotational convenience, whereby an array can be implicitly manipulated by a program, or one canimplicitly use continuation-passing style. It is especially from this latter use that ILC might bene�t.Indeed, our syntactic sugar of section 3 provides precisely the same advantages, but there are caseswhere it breaks down and monads would allow the programmer to avoid some of the \continuationhacking."Finally, the implementation of ILC, even for sequential machines, is far from a trivial matter,for several reasons. As with any lazy evaluation language, strictness analysis is required for a goodimplementation. However, it is more di�cult because of the presence of references.For the parallel case, there would seem to be reason for optimism about the ability of ILCto produce e�cient code. The argument usually made for functional languages as good parallellanguages is that programs are free of spurious control dependencies. Though ILC appears toreintroduce control operations, the new dependencies are not necessarily \spurious"| they areintroduced to allow for destructive updates which the programmer considers worthwhile. Theintegration of functional and imperative styles in ILC allows us to use state-oriented sequentialcomputation in a controlled way. On the other hand, ILC allows for excellent control over dataplacement, a critically important issue in parallel programming. For this, additional primitives

REFERENCES 12must be provided for array allocation in multiple memories. As with all the topics mentioned inthis section, this is something we are studying at present.References[1] S. Anderson and P. Hudak. Compilation of haskell array comprehensions for scienti�c com-puting. In SIGPLAN Conference on Design and Implementation of Programming Languages,1990.[2] Arvind, R.S. Nikhil, and K.K. Pingali. I-structures: Data structures for parallel computing.ACM Transactions on Programming Languages and Systems, 11(4):598{632, October 1989.[3] P. S. Barth, R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict, functionallanguage with state. In R. J. M. Hughes, editor, Conf. on Functional Program. Lang. andComput. Arch., pages 538{568. Springer-Verlag, Berlin, 1991. (LNCS Vol. 523).[4] M. J. C. Gordon. The Denotational Description of programming languages. Springer-Verlag,New York, 1979.[5] J.C. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In Fifth Ann.Symp. on Logic in Comp. Science. IEEE Computer Society, 1990.[6] P. Hudak and A. Bloss. The aggregate update problem in functional programming systems.In ACM Symp. on Princ. of Program. Lang., pages 300{314, 1985.[7] P. Hudak and P. Wadler (eds). Report on programming language Haskell, A non-strict purelyfunctional language (Version 1.0). Technical Report YALEU/DCS/RR777, Yale University,Apr 1990.[8] Paul Hudak. A semantics model of reference counting and its abstraction. In S. Abramskyand C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages 45{62. EllisHorwood Ltd., London, 1987.[9] R.S. Nikhil, K. Pingali, and Arvind. Id nouveau. Technical Report CSG 265, MIT, 1986.[10] W. V. O. Quine. Word and Object. MIT Press, 1960.[11] J. C. Reynolds. Preliminary design of the programming language Forsythe. Technical ReportCMU-CS-88-159, Carnegie-Mellon University, June 1988.[12] D. A. Schmidt. Detecting global variables in denotational speci�cations. ACM Transactionson Programming Languages and Systems, 7(2):299{310, Apr 1985.[13] V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative languages. In R. J. M.Hughes, editor, Conf. on Functional Program. Lang. and Comput. Arch., pages 192{214.Springer-Verlag, Berlin, 1991. (LNCS Vol. 523).[14] P. Wadler. Comprehending monads. In ACM Symp. on LISP and Functional Programming,1990.

REFERENCES 13[15] P. Wadler. Linear types can change the world. In M. Broy and C. B. Jones, editors, Program-ming Concepts and Methods. North-Holland, Amsterdam, 1990. (Proc. IFIP TC 2 WorkingConf., Sea of Galilee, Israel).[16] P. Wadler. Is there a use for linear logic? In Proc. ACM SIGPLAN Conf. on Partial Evaluationand Semantics-Based Program Manipulation. ACM, 1991. (SIGPLAN Notices, to appear).[17] D. Wakeling and C. Runciman. Linearity and laziness. In R. J. M. Hughes, editor, Conf. onFunctional Program. Lang. and Comput. Arch., pages 215{240. Springer-Verlag, Berlin, 1991.(LNCS Vol. 523).

